

Instruction & Operating Manual For DeviceNet.

About DeviceNet

DeviceNet is an open network standard originally developed by Allen-Bradley and based on a broadcastoriented, communications protocol - the Controller Area Network (CAN). The CAN protocol was originally developed by BOSCH the european automotive market for replacing expensive, wire harnesses with a lowcost network.

In 1995 Allen-Bradley released the protocol to the open DeviceNet Vendors Association (ODVA). ODVA oversees the development of the DeviceNet specification and the conformance testing of Devicenet products. ODVA is open to any manufacturer or user of this protocal with a worlwide membership of approximately 300 companies.

DeviceNet is a simple networking solution that reduces the cost and time required to install and wire industrial automation devices. A single DeviceNet Intellis System will accomodate up to 63 valves and 1008 discrete I/O points. Although a simple system to design and implement, DeviceNet has the capability to interconnect complex as well as simple devices to the same network, easily accomodating both analog and discrete I/O.

Westlock Intellis DeviceNet Module EL-40092

The EL-40092 module is a 4 input, two output network monitor. Inputs 0 and 1 are internal Hall effect sensors that are activated by the field of a magnet (south pole). Inputs 2 and 3 are active high/low (activated by pulling the input up to +24V or activated by pulling the input down to ground). The outputs are open drain active low FETs, fused (solid state resettable) at 0.2A with diode protection to 24Vdc. For current consumption see Table 1, page 9. Minimum power supply input voltage is 19Vdc to insure proper solenoid operation.

Connection to the network is via DeviceNet specific cable. There are both Round and Flat Media. Refer to the Cabling Information section, page 6 of this document for more information. See also Allen-Bradley document "DeviceNet Cable System" (Cat. No. DN-6.72) for a detailed treatment of this topic.

For data exchange to occur, each network monitor connected to the DeviceNet network must be programmed with a unique address, numbered between 0 and 63 and all nodes must be set to the same Baud rate as the scanner. This may be accomplished via setting the DIP switch, S1, on the electronics module. Refer to Tables 4, 5 and 5.1 page 10.

The address and Baud rate may also be set via explicit Messaging if positions 7 and 8 on S1 are set to the "On" position.

It is possible to exchange or add slaves during normal operation without interfering with communications to other nodes.

The Westlock Controls Corp. DeviceNet Module, EL-40092, operates as a GROUP 2 Only Slave on a DeviceNet network. The unit supports Explicit Messages and Polled I/O Messages of the Predefined Master/ Slave Connection Set. The device does not support the Explicit Unconnected Message Manager (UCMM). Refer to the Specification Overview, page 8 for a summary of features.

Installation Instructions

- **IMPORTANT**: If the valve monitor is in the field already mounted on an actuator and valve, please follow the field wiring instructions on the next page.
- **Warning:** The valve monitor should always be handled with care when the cover is removed and wired to an electrical power source.
- 1. Attach the proper mounting bracket and adapter to the valve monitor housing with the hardware provided.
- 2. Operate the actuator to full closed position.
- 3. Attach the valve monitor and mounting bracket to the actuator.
- 4. Note graphic display of the Beacon and circle one of the coinciding drawings shown below.

Switch Adjustment

Note: Switches are factory set. If you need to adjust for any reason follow instructions below.

1. To set switches, lift bottom cam and turn until switch is activated and then release. Spring will push cam back onto the splined shaft. Operate the actuator to the opposite extreme, push down on the top cam and turn until the open switch is activated.

2. Operate actuator from one extreme to the other several times to check switch operation.

<u>Westlock Intellis 7644 & 7679 ME or XE/D-7679 ME or XE Field</u> <u>Wiring Instructions</u>

- 1. Wiring options for 7644 & 7679/D-7679 ME or XE are shown in Fig. 1-3 below. The proper wiring diagram for your unit is shown on the inside of the 7679ME or XE covers.
- 2. All wiring must be in accordance with National Electrical Code (ANSI-NFPA-70) for area classifications. The valve monitors are approved as explosionproof for Class I, Division 1, Groups C and D; nonincendive for Class I, Division 2, Groups A,B,C and D; dust-ignitionproof for Class II/III, Division 1, Groups E,F and G hazardous (classified) locations; indoor/outdoor (NEMA type 4, 4X).

Always check the nameplate to make sure the agency approval ratings coincide with the application.

Caution: To Prevent Ignition of Hazardous Atmospheres, Replace Cover Before Actuating the Electrical Circuits. Keep Cover Tightly Closed When in Operation.

Model # D-7679

Figure 1

Model # 7679XE

 \bigcirc

 \bigcirc

- 3. Replace the electronics housing cover or junction housing cover.
- 4. Unit is now ready for automatic operation. If any assistance is required, please call Westlock Controls at (201) 794-7650.

Õ

Connection Options

DeviceNet Topologies

Cabling Information

The following is a summary of DevicNet cabling information as it pertains to Westlock Controls Intellis Network Monitors.

- 1. Round Media: a five conductor, NEC Class 2 cable, providing separate twisted pair buses for signal and power distribution. Available as "Thick", "Medium" and "Thin" cable.
 - 1.1. "Thick "cable typically used for trunk (Westlock p/n EL-10486 or similar).
 - 1.1.1. The "thick" DeviceNet cable consists of a 2/15 AWG power pair, a 2/18 AWG data pair and an 18 AWG drain.
 - 1.2. "Medium" cable typically used for drops (Westlock p/n EL-10433 or similar).
 - 1.2.1. The "Medium" DeviceNet cable consists of a 2/16 AWG power pair, a 2/20 AWG data pair and an 20 AWG drain.
 - 1.3. "Thin" cable typically used for drops (Westlock p/n EL-10487 or similar).
 - 1.3.1. The "thin" DeviceNet cable consists of a 2/22 AWG power pair, a 2/22 AWG data pair and a 22 AWG drain.
 - 1.4. "Thick", "Medium" or "Thin" cable may be used for either trunklines or droplines, though end-to-end network distances vary with data rate and cable size. Refer to Table 2, page 9 for detailed information.
- Flat Media: a four conductor cable, providing four parallel 16 AWG conductors for signal and power distribution. Available with either a NEC Class 1 or Class 2 cable rating.
 - 2.1. Flat NEC Class 2 cable used for trunk only (Westlock p/n EL-10520 or similar).
 - 2.2. Requires the use of IDC type connectors to connect drops to the trunk.
 - 2.3. End-to-end network distances are different than with Round Media and vary with data rate. Refer to Table 2, page 9 for detailed information.

Specification Overview

	Shielded two twisted pairs for
Round Physical Media	communications and power
	Unshielded four parallel conductors for
Flat Physical Media	communications and power.
	1640 feet @ 125Kbaud w/round media
Maximum Distance	1378 feet @ 125Kbaud w/flat media
Maximum Network	63/network,
Monitors per System	2 networks/1771-SDN scanner
Maximum I/O Points	279/
Per System	3/8/network
Current Consumption per	80 mA single output energized, 100
Network Monitor	mA two outputs energized
	Allen-Bradley, Omron, SST, GE,
Interface Capability	Siemens, etc.
Communications Method	Group 2 Only slave
Error Checking	CRC
Network Topology	Trunk/drop with branching
Redundancy	No
Valve Specific Diagnostics	Yes

DeviceNet Feat	ures					
Device Type	Generic					
Explicit Peer to Peer Messaging	No					
I/O Peer to Peer Messaging	No					
Configuration Consistency Value	No					
Faulted Node Recovery	No					
Baud Rates	125K, 250K, 500K					
Master/Scanner	No					
I/O Slave Messaging						
Bit Strobe	No					
Polling	Yes					
Cyclic	No					
• Change of State (COS)	No					

DeviceNet Module EL-40092 Current Consumption

Table 1										
DeviceNet EL-40092 (LZ-1)										
Input Active	Output Active	Current Draw ¹								
0	0	50mA								
4	0	62mA								
4	1	80mA								
4	2	100mA								
4	1	85mA(XP)								
4	2	110mA(XP)								

¹ All current values acquired using a non-incendive solenoid except where noted by an XP (explosion proof solenoid).

DeviceNet Maximum Trunk and Drop Lengths

Table 2

		Maximum Distance	
Data Rate	Flat Cable	Thick Cable	Med. & Thin Cable
125 kbs	420m (1378')	500m (1640')	100m (328')
250 kbs	200m (656')	250m (820')	100m (328")
500 kbs	75m (246')	100m (328')	100m (328')

Table 3	
Data Rate	Cumulative Drop Line Length
125 kbs	156m (512')
250 kbs	78m (256')
500 kbs	39m (128')

Table 4			
SWIT	CH S1	BAUD RATE	RETURNED VALUE
SW8	SW7		
OFF	OFF	125 K BITS PER SECOND	0X00
OFF	NO	250 K BITS PER SECOND	0x01
NO	OFF	500 K BITS PER SECOND	0x02
NO	NO	DEFAULT 125 K BITS PER SECOND	0x00 (default)
		OR LAST VALUE SET VIA SET ATTRIBUTE SINGLE	or 0x01 to 0x02 if set

Table 5 MAC IDs 0-30

RETURNED VALUE		0×00	0x01	0×02	0x03	0x04	0×05	0×06	0x07	0x08	0×09	A0x0	0x0B	0×0C	OX0D	0×0E	0x0F	0x10	0x11	0x12	0x13	0x14	0x15	0x16	0x17	0x18	0x19	0x1A	0x1B	0x1C	0x1D	0x1E	0x1F
MacID		0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	SW1	OFF	NO	OFF	NO	9FF	NO	OFF	NO	OFF	NO	OFF	NO	9FF	NO	OFF	NO																
	SW2	OFF	OFF	NO	NO																												
CH S1	SW3	OFF	OFF	OFF	OFF	NO	NO	NO	ON	OFF	OFF	OFF	OFF	NO	NO	NO	ON	OFF	OFF	OFF	OFF	NO	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON
SWITO	SW4	OFF	NO	OFF	NO	ON	NO	NO	ON	ON	ON	NO																					
	SW5	OFF	NO	NO	NO	NO	NO	NO	ON	NO	NO	ON	NO	NO	ON	ON	ON	NO															
	SW6	OFF	OFF	OFF	OFF	JJO	OFF	OFF	OFF	OFF	OFF	OFF	JJO	JJO	JJO	OFF																	

Table 5.1, MAC IDs 31-63

		SWITC	CH S1			MacID	RETURNED VALUE
SW6	SW5	SW4	SW3	SW2	SW1		
OFF	NO	NO	NO	NO	NO	31	0x1F
NO	OFF	OFF	OFF	OFF	OFF	32	0x20
NO	OFF	110	OFF	OFF	NO	33	0x21
NO	OFF	9FF	OFF	NO	OFF	34	0x22
NO	OFF	9FF	OFF	NO	NO	35	0x23
NO	OFF	9FF	NO	OFF	OFF	96	0x24
NO	OFF	340	NO	OFF	NO	37	0x25
NO	OFF	340	NO	NO	OFF	38	0x26
NO	OFF	OFF	NO	NO	NO	68	0x27
NO	OFF	NO	OFF	OFF	OFF	40	0x28
NO	OFF	NO	OFF	OFF	NO	41	0x29
NO	OFF	NO	OFF	NO	OFF	42	0x2A
NO	OFF	NO	OFF	NO	NO	43	0x2B
NO	OFF	NO	NO	OFF	OFF	44	0x2C
NO	OFF	NO	NO	OFF	NO	45	0x2D
NO	OFF	NO	NO	NO	OFF	46	0x2E
ON	OFF	NO	ON	ON	NO	47	0x2F
NO	ON	OFF	OFF	OFF	OFF	48	0x30
NO	ON	OFF	OFF	OFF	NO	49	0x31
NO	NO	OFF	OFF	NO	OFF	20	0x32
NO	NO	OFF	OFF	NO	NO	51	0x33
NO	ON	OFF	NO	OFF	OFF	52	0x34
ON	ON	OFF	ON	OFF	NO	53	0x35
ON	ON	OFF	ON	ON	OFF	54	0x36
ON	ON	OFF	NO	ON	NO	55	0x37
NO	ON	NO	OFF	OFF	OFF	56	0x38
NO	ON	NO	OFF	OFF	NO	57	0x39
ON	ON	ON	OFF	ON	OFF	58	0x3A
NO	ON	NO	OFF	ON	NO	59	0x3B
NO	ON	NO	NO	OFF	OFF	09	0x3C
ON	ON	NO	ON	OFF	NO	61	0x3D
ON	ON	NO	ON	ON	OFF	62	0x3E
NO	NO	NO	NO	NO	NO	63	0x3F

Status Indicators

The LED's provide information concerning the status of inputs, outputs, the module and/or the network. The LED's provide visual indication whether any inputs or ouputs are active and whether the module or network is in a fault condition. The I/O Status LED's are intended to indicate the state of the inputs and ouputs of the module, not necessarily the on/off condition of the I/O points themselves.

Module P/N	LED	State	Indicates
		Off	There is no power applied to the device.
		Green	Device is operating in a normal condition.
	Module	Flashing Green	The device needs commissioning due to
	Status		configuration missing, incomplete or incor-
	LED 1		rect.
		Red	Unrecoverable fault, device may need
			replacing.
		Flashing Red	Recoverable fault.
		Off	Not powered/Not online
		Green	For a Group 2 Only device: Device is allo-
			cated to Master
	Network	Flashing Green	Online, not connected. For a Group 2 Only
	Status	_	device:Device is not allocated to a Master.
	LED 2	Red	Failed communication device. The device
			has detected and error that has rendered it
EL-40092			incapable of communication on the network
			(Duplicate MAC ID or Bus-off).
		Flashing Red	One or more I/O connections are in the
		X 7 11	Time-out state.
	Closed LS	Yellow	Input 0, Bottom L.S. Closed: Valve is in the
	INU LED		closed position as determined by the trigger-
			ing of the Internal Hall Effect sensor by the
			travel of the trigger mechanism on the shaft
	On an LC	V-11	assembly.
	Open LS	Yellow	input 1, 10p L.S. Closed: valve is in the
	INI LED		open position as determined by the trigger-
			ing of the internal Hall Effect sensor by the
			travel of the trigger mechanism on the shart
	Aux Input	Vallaw	assembly.
	Aux. Input	Tellow	attached to this input is closed
	Aux Input	Vallow	Input 2 Active: Dry contact type switch
	IN3 I FD	TCHOW	attached to this input is closed
		Vellow	Output 0 "A" Solenoid is energized
	OUT0 LED	10110 W	Sulput 0. A Solonola is chergized.
	Output	Yellow	Output 1 "B" Solenoid is energized
	OUT1 LED		

DEVICENET D-PAC MODULE (EL-40092)

WESTLOCK INTELLIS DEVICENET MODULE EL-40092 COMMUNICATIONS

Table 6							
INPUT #	ТҮРЕ	MODULE REFERENCE	BITMAP OF DATA INSTANCE #4 (8-POINT INPUT WITH NO STATUS) ATTRIBUTE #3 (DATA)				
INPUT 0	Hall Effect	Internal Sensor	BYTE 0, BIT 0 Valve Closed (Bottom L.S.)				
INPUT 1	Hall Effect	Internal Sensor	BYTE 0, BIT 1 Valve Open (Top L.S.)				
INPUT 2	Active High/Low*	J2-1 (In Hi/Low) to J2-2 (Gnd)	BYTE 0, BIT 2 Aux. Input				
INPUT 3	Active High/Low*	J2-3 (In Hi/Low) to J2-4 (Gnd)	BYTE 0, BIT 3 Aux. Input				
*Active High indicates that pulling the input pin up to +U or down to ground activates the input.							
OUTPUT #	ТҮРЕ	MODULE REFERENCE	BITMAP OF DATA INSTANCE #33 (STATIC OUTPUT) ATTRIBUTE #3 (DATA)				
OUTPUT 0	Active Low*	J4-1 (+24V) to J4-2 (Out)	BYTE 0, BIT 0 "A" Solenoid				
OUTPUT 1	Active Low*	J4-3 (+24V) to J4-4 (Out)	BYTE 0, BIT 1 "B" Solenoid or Aux. Output				
*Active Low indicates that when the output is activated it pulls the pin down to GND drawing current through the load from the +24V							